RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. SECOND SEMESTER EXAMINATION, MAY 2016

FIRST YEAR [BATCH 2015-18]

CHEMISTRY (Honours)

Date : 18/05/2016 Time : 11 am – 1 pm

Paper: II (Gr. A&B)

Full Marks : 50

[2]

[3]

[3]

[2]

[4]

[3]

[Use a separate Answer Book for each group]

Group – A

[Attempt one question from each Unit]

Unit – I

- 1. a) Which is the more effective way to increase the thermal efficiency of a Carnot engine : to increase T_H, keeping T_L constant; or to decrease T_L, keeping T_H constant? [T_H is the temperature of the hot reservoir and T_L is the temperature of the cold reservoir]
 - b) The molar heat capacity of a solid metal at constant pressure is given by the following equation in the temperature interval 300K to 600K $C_{P} = 25 \cdot 94 + 5 \cdot 44 \times 10^{-3} \text{TJK}^{-1} \text{mol}^{-1}$.

What is the entropy change when 1 mol of this metal is heated from 300K to 600K at constant pressure?

c) Starting from the definition of Joule-Thomson coefficient (μ_{JT}) prove that $\mu_{JT} = \frac{V}{C_{T}}(\alpha T - 1)$

where α is the coefficient of thermal expansion.

- d) Using the thermodynamic equation of state evaluate $\left(\frac{\partial u}{\partial v}\right)_{m}$ for the van-der-Waals gas. [3]
- e) Derive the condition for spontaneity of a process at constant temperature and pressure.
- Sketch the possible indistinguishable arrangements of two balls in six cells with the 2. a) i) restriction that no two balls can be placed in a single cell.
 - ii) Calculate the thermodynamic entropy for the above arrangement.
 - b) Draw qualitative plots of G against T at a constant pressure for three different phases of a particular substance (solid, liquid and gas). Assume entropy to be constant in the temperature range considered. [3]
 - c) Justify or criticise :
 - An adiabatic process is always isoentropic. i)
 - ii) Any spontaneous process is always accompanied by a decrease in free energy.

d) Knowing that
$$C_{\rm P} - C_{\rm V} = \left[P + \left(\frac{\partial U}{\partial V} \right)_{\rm T} \right] \left(\frac{\partial V}{\partial T} \right)_{\rm P}$$
, show that $C_{\rm P} - C_{\rm V} = \frac{\alpha^2 V T}{\beta}$ where α is the coefficient of thermal expansion and β is the compressibility factor. [3]

coefficient of thermal expansion and β is the compressibility factor.

Unit – II

- 3. a) Justify or criticize with arguments (any two) :
 - If f_1 and f_2 are eigenfunctions of any operator, \hat{B} , then $C_1f_1 + C_2f_2$ must be an eigenfunction i) of **B**.
 - ii) For the particle in a box in n = 2 stationary state, the probability of finding the particle in the left quarter of the box equals to that in the right quarter.
 - iii) The wavelength of the particle in a box absorption transition from quantum no. n to n+1decreases as the value of n increases.
 - b) Determine whether the momentum and (i) the kinetic energy and (ii) the potential energy can be known simultaneously (consider one dimension).

[2×3]

[4]

c) Examine whether the following functions are acceptable wave function or not

1)
$$e^{\frac{i\varphi}{2}} [0 \le \varphi \le 2\pi]$$
 [2]

- 4. a) A particle of mass m is confined to a 1D box of length 'a'. If it makes a radiative transition from second excited state to the ground state then what will be the frequency of the emitted photon? [3]
 - b) Assume that a particle is confined to a box of length a, and that the system wave function is

$$\psi(\mathbf{x}) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi \mathbf{x}}{a}\right).$$

- i) Is this state an eigen function of the position operator?
- ii) Calculate the average value of the position (x) that would be obtained for a large number of measurements. Explain your result. [4]

[1×3]

[2]

[2.5+2.5]

[3]

[2+2+2]

c) Answer **any one** :

_|v|r

- i) Show that the 1st two eigenfunctions of the Hamiltonian operator for the particle in a hard 1D box are orthogonal to each other.
- ii) Show that eigenvalues of a hermitian operator are real.
- d) Comment on $[\hat{p}_x, \hat{x}]$ is related to the uncertainty relation.

<u>Group - B</u> [Attempt <u>one question from each Unit]</u>

<u>Unit – III</u>

- 5. a) What reactivity difference would you expect when KI reacts separately with CH₃CH₂Br and (CH₃)₃CCH₂Br in acetone? [2]
 b) Show the mechanism of addition of bromine to *cis-* and *trans-2-*butene and write down the products indicating their stereochemistry. [3]
 - c) Carryout the transformations with mechanisms :

- d) Arrange the following anions in order of increasing nucleophilicity. Give reasons for your answer. R_2N^- , RO^- , F^- , R_3C^-
- e) Give the products of the following reaction, indicate the major one with explanation. [2]

$$\bigwedge_{\substack{\text{NMe}_3\\ (\neq)}} \underbrace{\text{Ag}_2\text{O (moist)}}_{\Delta}$$

6. a) Give product(s) in the following reactions with plausible mechanism. [2+2]

i)
$$PH - CH - CHMe \xrightarrow{MeOH}_{H_2SO_4(cat.)}$$

Т

ii) PhCH = CHEt
$$\xrightarrow{h\nu, HBr/(PhCO_2)_2}$$

b) How can you convert (show the steps) :

i) (R)
$$-2 - \text{octanol} \rightarrow (S) - 2 - \text{octanol}$$

H

ii) MeO
$$\land \longrightarrow \land_0$$

iii)
$$C_{5}H_{11} \land \longrightarrow C_{5}H_{11} \land OH$$

- c) Scrambling of ¹⁴C label occurs when PhCH₂ $\stackrel{14}{CH_2}$ Br is treated with AlBr₃ at low temperature Explain with mechanism.
- d) 'Alkyl halides gives mainly cyanides with ethanolic KCN but with AgCN isocyanides are the main product' —Explain. [2]

<u>Unit – IV</u>

7. a) Give IUPAC name to <u>any two</u> of the following :

$$\begin{array}{c} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \end{array} , \begin{array}{c} & & \\ & & \\ \end{array} \\ OH ; \end{array} , \begin{array}{c} & & \\ & & \\ OEt \end{array}$$

- b) Arrange the following compounds in order of increasing pka values and give reasons. [3] Aniline, 4 – nitroaniline, 2, 6 – dimethyl – 4 – nitroaniline, 3, 5 – dimethyl – 4 – nitroaniline [2]
- c) State the principle of microscopic reversibility with an example.
- d) Write down the major product with reason.

Ph CH CH₂Me + Br₂
$$\longrightarrow$$

Me

- 8. a) Arrange the following in increasing order of acid strength : 4-nitrophenol; 3,5 dimethyl 4 4nitrophenol and 2, 6 - dimethyl - 4 - nitrophenol. Give reason. [3]
 - b) Which of the two α -diketones has higher enol content?

- c) Which of the following two reactions conducted at the same temperature is expected to have larger value of equilibrium constant and why? [3]
 - i) $CH_3CO_2H + CH_3CH_2OH \rightleftharpoons CH_3CO_2CH_2CH_3 + H_2O$

ii)
$$HO-CH_2CH_2CH_2CO_2H \rightleftharpoons \bigvee_0 HH_2O$$

d) Compare stability of the ions in each case :

Х-

[2]

[3]

[2]

[3]

[2]